Controlling activation of the RNA-dependent protein kinase by siRNAs using site-specific chemical modification

نویسندگان

  • Sujiet Puthenveetil
  • Landon Whitby
  • Jin Ren
  • Kevin Kelnar
  • Joseph F. Krebs
  • Peter A. Beal
چکیده

The RNA-dependent protein kinase (PKR) is activated by binding to double-stranded RNA (dsRNA). Activation of PKR by short-interfering RNAs (siRNAs) and stimulation of the innate immune response has been suggested to explain certain off-target effects in some RNA interference experiments. Here we show that PKR's kinase activity is stimulated in vitro 3- to 5-fold by siRNA duplexes with 19 bp and 2 nt 3'-overhangs, whereas the maximum activation observed for poly(I)*poly(C) was 17-fold over background under the same conditions. Directed hydroxyl radical cleavage experiments indicated that siRNA duplexes have at least four different binding sites for PKR's dsRNA binding motifs (dsRBMs). The location of these binding sites suggested specific nucleotide positions in the siRNA sense strand that could be modified with a corresponding loss of PKR binding. Modification at these sites with N2-benzyl-2'-deoxyguanosine (BndG) blocked interaction with PKR's dsRBMs and inhibited activation of PKR by the siRNA. Importantly, modification of an siRNA duplex that greatly reduced PKR activation did not prevent the duplex from lowering mRNA levels of a targeted message by RNA interference in HeLa cells. Thus, these studies demonstrate that specific positions in an siRNA can be rationally modified to prevent interaction with components of cellular dsRNA-regulated pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication

SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...

متن کامل

Cellular SRC kinases and dsRNA dependent protein kinase (PKR) play key role in intracellular viral (CVB3) replication

SRC kinases and PKR are intracellular protein kinases, which play key roles in intracellular viral replication. In this research, the effect of SRC kinase inhibition and PKR activation and inhibition on replication of coxsakievirus (CVB3), an entrovirus of the family picornaviridae – causative agents of fatal myocarditis, was studied. Vero and Hela cells were cultured and infected with CVB3 in ...

متن کامل

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

Involvement of Activation of PKR in HBx-siRNA-Mediated Innate Immune Effects on HBV Inhibition

RNA interference (RNAi) of virus-specific genes offers the possibility of developing a new anti-hepatitis B virus (anti-HBV) therapy. Recent studies have revealed that siRNAs can induce an innate immune response in vitro and in vivo. Here, HBVx (HBx) mRNA expression and HBV replication were significantly inhibited, followed by the enhancement of expression of type I interferons (IFNs), IFN-stim...

متن کامل

Site-Specific Modification Using the 2′-Methoxyethyl Group Improves the Specificity and Activity of siRNAs

Rapid progress has been made toward small interfering RNA (siRNA)-based therapy for human disorders, but rationally optimizing siRNAs for high specificity and potent silencing remains a challenge. In this study, we explored the effect of chemical modification at the cleavage site of siRNAs. We found that modifications at positions 9 and 10 markedly reduced the silencing potency of the unmodifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006